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Abstract This article provides a brief biographical synopsis of the life of Cyrus Derman
and a comprehensive summary of his research. Professor Cyrus Derman was known among
his friends as Cy.

Keywords Operations research · Dynamic programming · Markovian decision processes ·
Markov processes · Stochastic approximation · Probability · Reliability · Quality control

1 Life and career

Derman was born on July 16, 1925 in Philadelphia and died at the age of 85 on April 27,
2011. He is survived by his daughter Hessy Derman.

Cy grew up in Collingdale Pennsylvania. He was the son of a grocery store owner who
came to the United States from Lithuania. As a young boy Cy was often invited to play
violin at a Philadelphia radio show for talented children. After high school he served in the
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US Navy, then pursued his undergraduate education at the University of Pennsylvania where,
in 1948, he completed a degree in Liberal Arts, that for him meant music and mathematics.
After he completed a Master’s degree in Mathematics at the University of Pennsylvania,
in 1949, he went on to Columbia University for his graduate education in mathematical
statistics.

At Columbia he was privileged to work with many of the most important US statisti-
cians and probabilists of the early 1950s. Some of these were: Theodore (“Ted”) W. Ander-
son (chair), Aryeh (“Arie”) Dvoretzky, Herbert E. Robbins, Kai-Lai Chung, Joe Gani, Emil
Julius Gumbel (Derman was his T.A. and he helped him edit his book Statistics of Extremes),
Theodore (“Ted”) Harris, Howard Levene, Ronald Pyke, Jerome Sacks, Herbert Solomon,
Lajos Takacs, Jacob Wolfowitz. Kai-Lai Chung was his formal thesis advisor. However, Cy
wrote what he called a second thesis with Herbert Robbins, who considered Cy as his stu-
dent. In addition Cy on many occasions had expressed his gratitude towards Ted Harris for
introducing him to ways of thinking about stochastic processes. An early indication of his
success in mathematics came when the well-known authority of the time, William Feller,
cited young Derman’s unfinished dissertation work in his book next to the work of another
giant of the time Andrey N. Kolmogorov.

After finishing his Ph.D. in 1954, Derman spent a year as an instructor in the department
of Mathematics at Syracuse University. Then he joined the Department of Industrial Engi-
neering at Columbia University in 1954 as an assistant professor in Operations Research. In
1960 Cy Derman met Martha Winn (October 24, 1920–May 17, 2009) of Poughkeepsie NY
in Europe at an art gallery opening they both happened to be attending. Cy was traveling
with Herbert Robbins who knew Martha and introduced them. They married in 1961, and
they spent their first year of married life in Israel where Cy taught at the Technion. They
lived in Chappaqua NY and adopted and raised two children Adam and Hessy. In 1965 Cy
was promoted to the rank of Professor of Operations Research at Columbia University. He
was a prominent figure in Operations Research at Columbia during his 38 years there and in
1977 played a crucial role in the formation of the department of Industrial Engineering and
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Operations Research. This department soon thereafter became one of the top departments in
the field. He stayed at Columbia until his retirement in 1992. Cy was devastated when his
son Adam died in October 1989.

Derman held visiting appointments and taught at Syracuse University, Stanford Univer-
sity (1965–1966 and most summers during the period: 1971-1989), University of Califor-
nia Berkeley (Spring 1979), University of California Davis (1975–1976), Imperial College
(Spring 1970) and the Technion Israel Institute of Technology (1961–1962 as Guest Profes-
sor). Derman did not accept several offers to join the Operations Re- search department at
Stanford, because he wanted to be close, and to help both his aging father and a needy older
brother who lived in Philadelphia. However, he did spend many of his summers at Stanford
working with his close friends Gerald (Jerry) J. Lieberman, Sheldon M. Ross and Ingram
Olkin and he was glad to see the Stanford Operations Research department flourish under
the leadership of Lieberman and his student Arthur (Pete) F. Veinott Jr. Katehakis was also
asked to join him at Stanford during several summers in the 1980s.

Derman had the ability to make difficult ideas easy to explain for students and he was an
excellent teacher. He influenced the field of Operations Research through his Ph.D. advisees.
Many of them held or are holding important posts in academia and have had their own impact
felt. Notable students of his are: Morton Klein (1957), Peter Frank (1959), Arthur Veinott,
Jr. (1960), Robert Roeloffs (1962), Norman Agin (1964), Peter Kolesar (1964), Leon White
(1964), Israel Brosh (1967), Eric Brodheim (1968), Sheldon M. Ross (1968), Monique Be-
rard (1973), Ou Song Chan (1974), Christian Reynard (1974), Kiran Seth (1975), Michael
N. Katehakis (1980), Showlong Koh (1982), Yeong-duk Cho (1987). As of May 2013, Der-
man had 262 descendants listed at the Mathematics Genealogy Project.

Michael Katehakis remembers Cy’s seemingly endless stylistic corrections to the draft
of his Ph.D. thesis. When he complained about this, Cy asked him to go to a museum and
pay attention to a painting and be aware that each dot of the painting has a reason for its
existence. Many years later Cy smiled about this and said: “I really did not give you as
much of a hard time as I did with Pete Veinott”. Veinott’s perfectionism is well-known in
the profession. Perhaps it can be traced to this statement of Cy.

Cy was a Fellow of the Institute of Mathematical Statistics and the American Statistical
Association. In 2002, he was awarded the John von Neumann Theory Prize from the Institute
for Operations Research and Management Sciences for his contributions to performance
analysis and optimization of stochastic systems.

Even while enjoying an illustrious career in applied mathematics, operations research,
and statistics, Derman never lost his passion for music. He played violin all of his life and
in the early 1990s following his retirement from Columbia he performed with a chamber
group.

2 Major accomplishments

Cyrus Derman did fundamental research in Markov decision processes, i.e., sequential de-
cision making under uncertainty. He also made significant contributions in optimal main-
tenance, stochastic assignment, surveillance, quality control, clinical trials, queueing and
inventory depletion management among others.

In a series of important papers culminating in the book Finite State Markovian Decision
Processes (Derman 1970b), which he wrote following a suggestion of Richard Bellman,
Derman fundamentally advanced the theory of finite-state-and-action Markovian decision
processes. He took a leading role in showing that starting from a state, the set of state-action
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frequencies over all policies is the convex hull of the finite set of state-action frequencies
over all stationary deterministic Markov policies. This work plays a foundational role in
solving problems that arise in the presence of linear constraints on the state-action frequen-
cies, e.g., reflecting desired limits on the frequency of unfavorable events like failures, re-
jects, shortages and accidents, and has been widely used in practice. Moreover, it led him to
co-develop the first general method for finding minimum-average-cost (typically random-
ized) policies in the presence of such constraints.

With Jerome Sacks, Derman discovered the celebrated and widely used conditions that
assure an optimal stopping policy is a one-stage look-ahead policy, and applied them to give
simple solutions of problems of optimal equipment replacement and search for a favorable
price to buy an asset (Derman and Sacks 1960). With Gerald Lieberman and Sheldon Ross,
he introduced and gave an interesting solution to a sequential stochastic assignment problem
that has application to optimally assigning workers with differing skills to randomly arriv-
ing jobs of varying types (Derman et al. 1972a). With his student and long-time colleague
Morton Klein he originated and did pioneering work characterizing when first in, first out
(FIFO) and last in, first out (LIFO) issuing policies are optimal for items whose value or field
life depends on their age at issue (Derman and Klein 1958a, 1959). Derman also developed
a beautiful solution to the problem of finding a minimax inspection schedule for randomly
failing equipment (Derman 1961a). He influenced and contributed to engineering practice
by co-developing blood-inventory management policies that were used subsequently in New
York hospitals (Brodheim et al. 1975), evaluating the safety of New York bridges, and by
co-developing strategies for early termination of tests for the Navy.

3 Books

• Probability and Statistical Inference for Engineers: A First Course (Derman and Klein
1970). As the authors acknowledge in the preface, this book was written following the en-
couragement of Herbert Robbins to put into Ebook form a set of notes that were prepared
by the authors for an undergraduate course in the Department of “Industrial Engineer-
ing and Management” at Columbia. Its purpose was: “to present in compact form a one
semester course of study in probability theory and statistical inference. The book provides
an elegant elementary introduction to decision theory, estimation, tests of hypothesis and
confidence intervals.

• Finite State Markovian Decision Processes (Derman 1970b). This is one of the first books
on the topic of the optimal sequential control of Markovian dynamic systems. It intro-
duced the concept of Markovian decision process for the first time. In this text Derman
provides a general framework for formulating and solving (it discussed basic computa-
tional algorithms) certain optimization problems that became known as Markovian deci-
sion process. This book was intended for operation researchers, statisticians, mathemati-
cians and engineers.

• A Guide to Probability Theory and Application (Derman et al. 1973). This book has as
a unifying theme, the role that probability models can play in scientific and practical
applications. It includes many examples, with actual data, of real-world uses of models.
In addition, there is a detailed coverage of the properties and uses of probability models,
including many that do not rely on the normal distribution. This book contains an elegant
elementary introduction to Markov Chains.

• Probability Models and Application (Olkin et al. 1994). The text is a revision of the pre-
vious title with emphasis on where and how to apply probability methods to practical
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problems. It aims to help the reader acquire a strong preparation in the tools necessary for
applications. The material on the distributions of sums of independent random variables
is presented before the discussion of individual distributions.

• Statistical Aspects of Quality Control (Derman and Ross 1996). The text presents the key
ideas and concepts in a compact manner rather attempting to cover each topic in complete
depth. The authors use the concept of Average Run Length (ARL) to compare the different
control charts, such as Shewhart, moving average, and cusum. They introduce the Taguchi
approach to quality design and they provide a good survey of acceptance sampling. The
authors also present both on-line and off-line quality control methods and they cover a
wide range of statistical methods of quality control.

4 Probability, stochastic processes, and statistics

In Derman (1954a) Cy proved the following strong version of an ergodic property for
a Wiener process {X(t)}t≥0. When for some bounded functions f and g, the ratio∫ +∞

−∞ f (x)dx/
∫ +∞

−∞ g(x)dx is well defined, he showed that
∫ T

0 f (X(t))dt
∫ T

0 g(X(t))dt
→

∫ +∞
−∞ f (x)dx

∫ +∞
−∞ g(x)dx

, as T → ∞ (a.e.).

The proof relied on a clever decomposition of the interval [0, T ] into sub-intervals defined
by first passage times.

Derman with one of his main teachers Herbert E. Robbins in Derman and Robbins (1955)
presented a version of the strong law of large numbers for a case where E[X] is equal to
+∞. Let X1,X2, . . . be independent and identically distributed random variables with dis-
tribution F(x). For 0 < α < β < 1 and C > 0, suppose F(x) ≤ 1 − C/xα for large positive
x and

∫ 0
−∞ | x |β dF (x) < +∞. It was shown that with probability one, the sample mean∑n

1 Xi/n converges almost surely to +∞ as n tends to +∞.
Cy with his thesis advisor Chung in Chung and Derman (1956) consider a sequence of

integral-valued independent and identically distributed random variables {Xi}. They sup-
pose that 0 < E[Xi] < ∞, the random variables are aperiodic (i.e., the greatest common
divisor of all values of x for which P {Xi = x} > 0 is 1), and let A denote a set contain-
ing an infinite number of positive integers. They showed that the set A is visited infinitely
often with probability 1 by the sequence {Sn}, where Sn = ∑n

1 Xi . They also identified con-
ditions for similar results to hold when {Xi} has a continuous distribution and the set A is
a Lebesgue measurable set whose intersection with the positive real numbers has infinite
Lebesgue measure. They treated {Sn} as a Markov process and tapped into the theory of
such processes.

Derman was one of the first to make important contributions to the theory of stochas-
tic approximation: For each x suppose that a random noise Y (x) is observed surrounding
a regression function M(x), satisfying E[Y (x)] = M(x). Stochastic approximation aims at
finding a random sequence {Xn}n≥1 based on past observations such that Xn converges, in
some sense, to the true root x0 of the equation M(x0) = α or to the maximizing value x∗ of
M(x∗) = maxx{M(x)}. In 1951, Herbert Robbins and Sutton Monro pioneered the field by
identifying such a sequence that would converge, in probability, to the root of x0. In 1952,
Jack Kiefer and Jacob Wolfowitz had proposed a sequence {Xn} for which they provided
conditions under which it would almost surely converge to the maximizing value x∗. Der-
man (1956b) provided additional conditions under which the Kiefer-Wolfowitz procedure
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converges in distribution to the normal distribution. In addition, Derman (1956c) gave a
comprehensive exposition of all the work directed towards providing a more general theory
of stochastic approximation up to that time.

Derman (1957) developed a non-parametric procedure for estimating the α-quantile (i.e.,
the root θα of the equation F(θα) = α) of an unknown distribution function F(·), where at
any control x the only observation is a random observation Y (x) with P (Y (x) = 1) = F(x).
When α ∈ [1/2,1), his “Up & Down” procedure starting from any present level x works as
follows. If the response Y (x) = 0 is observed it would move on to x + 1. If the response
Y (x) = 1 is observed then using randomization, it would move to x + 1 with probability
1 − 1

2α
and to x − 1 with probability 1

2α
. Note there would be equal chances to move up

and down when x = θα . Derman let the estimate θn
α based on n observations be the average

of the most frequently encountered x levels. He used properties of Markov chains, to prove
that limit points of the sequence {θn

α } are surely within distance ±1 of θα .
In 1956, Aryeh Dvoretzky established an important Theorem on the convergence of cer-

tain transformations with superimposed random errors. The result could be used to show the
convergence of stochastic approximation methods. Derman and Sacks (1959) gave a simpler
proof of the probability-one version of the Dvoretzky Theorem. Further, the method of proof
of Derman and Sacks permitted a direct extension to the multi-dimensional case.

Derman and Klein (1958b) investigated the feasibility and the limitations related to the
use of regression for verifying a declared inventory. They had in mind applications related
to inspection and disarmament issues of that time.

Derman (1961b) considers a machine that transitions between the “ON” and “OFF” states
intermittently and each time it is “ON” the duration is an independent draw from a distribu-
tion F and each time it is “OFF” the duration is an independent draw from a distribution G.
He employed a semi-Markov process Z(t), which equals 1 or 0 according to whether the
machine is “ON” or “OFF”, and showed that

lim
T →+∞

1

T

∫ T

0
P

(
Z(t) = 1

)
dt = lim

s→0

1 − f (s)

1 − f (s)g(s)
.

The main result of Derman and Sacks (1960), is the celebrated Derman & Sacks Optimal
Optional Stopping Lemma: Let (Ω,F,P ) be a probability space, {Fn}n≥1 a filtration on it
and let {Yn} be a sequence of random variables with Yn measurable with respect to Fn and
such that EYn exists and is finite for all n. Let C be the class of all optional stopping rules
N such that EN < ∞. They stated and proved the following lemma.

If there exists an optional stopping rule N∗ that satisfies the following three conditions:

(a) EN∗ < ∞,
(b) E(Yn | Fn−1) ≥ Yn−1 when n ≤ N∗(ω) a.e. (P ) and E(Yn | Fn−1) ≤ Yn−1 when n ≥

N∗(ω) a.e. (P ),
(c) E(|Yn+1 − Yn | |Fn) ≤ M , for some finite constant M ,

then

EYN∗ = max
N∈C

EYN.

In order to understand this lemma, it is helpful to think of Yn as denoting the fortune of a
player after the nth game in a sequence of not necessarily independent gambling games. An
optimal stopping rule is one that maximizes the expected fortune.

Derman and Sacks applied their lemma to the following replacement problem. Let a
sequence Xt , t = 1,2, . . . of independent and identically distributed nonnegative, random
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variables with common distribution function F denote the observable equipment deteriora-
tion, where Xt denotes the amount of deterioration occurring during the interval (t − 1, t).
Let Sn = ∑n

t=1 Xt for any n and suppose the equipment fails whenever Sn > L, for a known
constant L. If a replacement occurs before a failure there is a cost c > 0. The cost of a re-
placement after a failure is c + A > c. For any replacement rule R, let CRi be the cost (i.e.,
c or c + A ) and NRi be the cycle length associated with the ith replacement cycle under Ri ,
i = 1,2, . . .. For rules under which CRi and NRi are independent and identically distributed,
natural optimization criteria related to the average system cost are: φR = ECR1/ENR1 and
φ′

R = E(CR1/NR1).
General replacement rules (policies) that efficiently use all acquired information specify

replacement at a stopping time N of the form: N = min{ν, 	Z
+1}, for some stopping time
ν of the sequence {Xt }, where Z is the service life of the equipment and for any real number
a, 	a
 denotes the greatest integer less or equal to a.

Using their lemma they showed that the optimal (it maximizes φ′
R) replacement rule

specifies replacement of the equipment when it has been in service for N∗ time periods,
where: N∗ = min{n∗ − 1, 	Z
 + 1} and

n∗ = inf

{

n : c

A(n − 1)
≤ 1 − F(L − Sn−1)

}

.

This Derman and Sacks lemma also applies in a variety of situations. For example, in
the same paper they obtained a simple derivation for the solution to the following problem,
that was previously considered by Gideon Schwarz and also by Herbert Robbins who had
obtained the same solution for N∗ by different methods. Let Xn be a sequence of indepen-
dent and identically distributed random variables with common distributions F with finite
first moment. Let Yn = max{X1, . . . ,Xn} − cn, for some positive constant c. The objective
is to find an optional stopping rule N which maximizes EYN . The lemma readily yields that:
N∗ = inf{n : max{X1, . . . ,Xn} ≥ a}, where a is the solution of

∫ ∞
a

(x − a)dF (x) = c.
Derman and Ignall (1969) continued with the above setup and considered two variants

of the problem of getting close to but not beyond a boundary. One is about maximizing
E[WN ] where Wn = Sn if Sn ≤ L and Wn = A for A ≤ L if Sn > L, and another is about
maximizing E[SN |SN ≤ L] subject to P (SN > L) ≤ β . When A for the first problem or β

for the second problem is large enough, the authors showed that an optimal rule could be
characterized by stopping as soon as Sn > S∗ for some number S∗. The closed-form solution
for S∗ was found for the case where the Xi ’s are exponentially distributed.

Derman (1956a) investigated the problem of making inferences for the transition proba-
bilities pij of irreducible, positive recurrent and aperiodic Markov chains, from state obser-
vations x1, . . . , xn. Let mij , σ 2

ij denote respectively the expectation and the variance of the
number of transitions it takes the chain to go from state i to state j . For any subset {i1, . . . , ir}
of states, let Nn(i1, . . . , ir ) be the number of times the consecutive sequence (i1, . . . , ir ) is
observed during transitions 1, . . . , n. In particular Nn(i) is the number of times state i is
observed (visited) during transitions ν = 1, . . . , n. Cy then established the following:

(i) Let i1, . . . , ir be any finite sequence of distinct states and suppose there exists a state i

in the class such that σ 2
ii < ∞. Then there is a covariance matrix C so that

1√
n

(

Nn(i1) − n

mi11i11

, . . . ,Nn(ir ) − n

mir ir

)

converges, as n → ∞, to a multivariate Normal distribution with mean 0 covariance
matrix C which can be determined.
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(ii) Given k subsets of states {i11, . . . , i1r1}, . . ., {ik1, . . . , ikrk }, let each Pl for l = 1, . . . , k

stand for the probability of going from il1 to ilrl in succession. Derman showed that the
distribution of

1√
n

(

Nn(i11, . . . , i1r1) − nP1

mi11i11

, . . . ,Nn(ik1, . . . , ikrk ) − nPk

mik1ik1

)

converges to a multivariate Normal distribution with mean 0 and a covariance matrix
that could be approximately characterized.

These theorems can be used to construct test statistics and chi-square tests suitable for any
finite number of state transition probabilities.

5 Markov chains and Markov decision processes

Derman made fundamental contributions to the understanding of Markov chains. His focus
was on irreducible stationary chains with denumerable states 0,1, . . .. Each of these chains
is describable by a time-invariant stochastic transition matrix P = (pij ), in which every pij

stands for the probability of going from state i to state j in one transition. Each pair of states
is assumed to communicate with each other; hence, all states belong to a single class.

In Derman (1954b) he gave an important characterization to such Markov chains when
they are recurrent. For such a chain, he demonstrated the existence of numbers akin to rela-
tive frequencies, regardless of whether the chain is positive or merely null recurrent: i.e., he
showed that there exist positive numbers v0, v1, . . . that satisfy

vk =
+∞∑

j=0

pjkvj , ∀k = 0,1,2, . . . .

In addition,

vk

v0
= lim

n→+∞
p

(n)
kk

p
(n)

00

,

where each p
(n)
jj is the probability of going from state j in the chain to the same state in n

transitions; also, the Markov chain is null recurrent if and only if
∑+∞

0 vk = +∞.
Using analysis based on characteristic functions, Derman (1955) showed that the vk val-

ues identified in the above possess statistical equilibrium interpretations. Suppose at an ini-
tial time 0, particles are distributed at the Markov chain’s various states, with the number
Ak(0) of particles at each state k being independently generated from a Poisson distribution
with mean vk , and each individual particle subsequently undergoes the Markov chain state
transitions independently. Then, at any future time n, the random numbers Ak(n) of particles
at states k would behave the same.

While viewing the vector of numbers of particles at all states as a super state, the evo-
lution of the super state as a Markov chain was also studied. In the same work, Derman
furthered the understanding on how the ratio

∑n

0 p
(k)
ii /

∑n

0 p
(k)
jj between frequencies of vis-

its to different states converges to its limit πij as the number of transitions n approaches
+∞.

Derman also significantly contributed to lay the foundations for Markov decision pro-
cesses (MDPs). A typical Markov decision process involves discrete time points n =
0,1, . . ., a finite number of states 0,1, . . . ,L, and a finite number of potential decisions
1, . . . ,K . Under decision k, state transition is governed by the stochastic matrix Q(k) =
(qij (k)). When decision k is used at state i, a cost wi(k), irrespective of the time point t , is
to be incurred.
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A general policy R could be history-dependent, whereby the probability that decision k is
made in a period may depend on all states and decisions experienced from the very beginning
until the period. Thus, a Markovian or memoryless policy R would prescribe potentially
randomized decisions according to the current period and state. A stationary Markovian
policy R specifies the n-independent probability Dik of applying decision k at state i in any
period n. It is considered stationary deterministic when Dik = 0 or 1 for all i and k. Applying
a stationary Markovian policy R to the Markov decision process Q = (qij (k)) results in a
Markov chain with transition matrix P R = (pR

ij ), where each pR
ij = ∑K

k=1 Dikqij (k).
Derman (1962a) considered two problems, one about minimizing the total cost in the

long run and another about minimizing the total cost incurred before hitting an absorbing
state. He showed that neither problem need look beyond stationary deterministic policies.
His approach first tackled problems where α discounts are involved, and then took advantage
of the limiting behavior when α → 1. Under irreducibility assumptions, Derman further
demonstrated that optimal stationary Markovian policies could be identified through solving
linear programming problems.

Derman and Klein (1965) studied a finite N -horizon MDP with time-dependent transi-
tion rules qij (n, k) and costs wi(n, k). By enlarging the state space from (0,1, . . . ,L) to
(0,1, . . . ,L) × (0,1, . . . ,N), they demonstrated that results from Derman (1962a) origi-
nally intended for stationary systems would still apply; indeed, even when side constraints
are present and when termination is decided through a stopping time bounded by N , the
problem would remain solvable via linear programming.

In Derman (1963c) he gave strong support to the substitutability of history-dependent
policies by their stationary Markovian counterparts under the long-run average criterion. Let
GR stand for the set of limit points, as N → +∞, of the (L+ 1)-component vectors formed
from the expected frequencies at which various states are reached over a duration of N

periods when the starting state experiences all possibilities and state transitions are governed
by policy R. Under the condition that P R would always specify an irreducible Markov chain
as long as R is stationary deterministic, Derman illustrated that the union of GR over all
stationary Markovian policies is as big as that over all history-dependent policies; moreover,
this common set is closed and convex. This means that stationary Markovian policies achieve
any long-run average performance attainable by any history-dependent policy.

When an MDP is started at state i and subsequently governed by policy R, let φR
Njk(i)

represent the expected frequency at which state j and decision k appear together in a given
period over periods 0 through N . Then, φR

N(i) = (φR
Njk(i)) is an (L + 1) × K-component

frequency vector. Let H(i), H ′(i), and H ′′(i) stand for the set of limit points of φR
N(i)

as N → +∞ while R range in, respectively, all history-dependent policies, all stationary
Markovian policies, and all stationary deterministic policies.

Another way to express the main result of Derman (1963c) is that, under the aforemen-
tioned irreducibility condition, H ′(i) would be equal to H(i). Derman (1964a) worked with
the general case where irreducibility does not necessarily apply. He showed that the convex
hulls of H ′′(i) and H ′(i) are the same, and they both contain H(i). This means that a ran-
domization of stationary deterministic policies would reach targets set for history-dependent
policies.

The above was proved by Derman (1964b). Furthermore, under the irreducibility condi-
tion, Derman showed that H(i) = H ′(i) is independent of the starting state i, and that the
convex hull of H ′′(i) amounts to H(i) = H ′(i). He also provided a strong law, stating that
with probability one, sample limit points of the state-decision frequency vectors resulting
from any history-dependent policy would reside in the convex hull of

⋃L

i=0 H ′′(i). Relat-
edly, Derman and Strauch (1966) showed that the expected frequencies achieved by any
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history-dependent policy could be replicated by a Markovian but not necessarily stationary
policy.

Derman (1966) studied a Markov decision process with a denumerable state space I =
{0,1, . . .}, under the long-run average criterion, and state transition probabilities qij (k) that
are functions only of the last observed state i and the subsequently made decision k. For
such denumerable state space problems an optimal policy need not exist, and even when
it does, it need not be stationary deterministic. Cy showed that when all action sets Ai are
finite for all i ∈ I , the one step state—action costs wik belong to a bounded set of numbers
and if there exists a bounded solution {g, vj }j∈I of the functional equation:

g + vi = min
k∈Ai

{

wik +
∑

j∈I

qij (k)vj

}

then there exists an optimal deterministic policy (“rule”) R∗ specified by:

R∗(i) = argmink∈Ai

{

wik +
∑

j∈I

qij (k)vj

}

.

Further in this paper Cy provided, irreducibility type, conditions under which optimal deter-
ministic policies exist and could be computed with a policy improvement procedure.

Derman and Veinott (1967) gave conditions for the existence, uniqueness and the form
of the solutions of the countable system of optimality conditions above. Specifically, they
considered a Markov chain {Xn}n≥0 with denumerable state space I = {0,1, . . .}, with tran-
sition matrix P = (pij ) and {wi} a sequence of real numbers. The sufficient conditions of
Derman (1966) were connected to the following system of equations:

g + vi = wi +
+∞∑

j=0

pijvj , ∀i = 0,1, . . . ,

where g and v0, v1, . . . are unknown variables.
They used the auxiliary processes:

Zn(j) = 1{Xn = j and Xm = 0 for m = 0, . . . , n − 1},

Yn =
∞∑

j=0

wjZn(j),

and quantities 0p
∗
ij = E(

∑∞
n=0 Zn(j)|X0 = i), ci0 = E(

∑∞
n=0 Yn|X0 = i) = ∑∞

j=0 0p
∗
ijwj ,

mi0 = ∑∞
j=0 0p

∗
ij and they showed that if the numbers mi0 and ci0 are finite for all i ∈ I then

the following statements are true.

(i) A solution to the above system of equations is given by g = c00/m00 and vi = ci0 −
c00mi0/m00; in addition the series

∑∞
j=0 pijvj converges absolutely.

(ii) If {g, v0, . . .} is a sequence with
∑∞

j=0 0p
∗
ij vj converging absolutely, for all i and if in

addition
∑∞

j=0 0p
∗
ij (cj0 − (c00/m00)mi0) converges absolutely for all i, then {g, v0, . . .}

is a solution to the above system if and only if there exists a real number r such that
g = c00/m00 and vi = ci0 − (c00/m00)mi0 + r .

Derman (1970a) summarized the above advances on Markov decision processes with
both finite and denumerable state spaces when the long-run average criterion is applied.

Derman and Veinott (1972) considered a general finite state and action Markov decision
processes when there are linear side conditions on the limit points of the expected state-
action frequencies. This problem had been solved previously only for the case where every
deterministic stationary policy gives rise to at most one ergodic class. In this paper they
removed that restriction by applying the Dantzig-Wolfe decomposition principle.
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In Brodheim et al. (1974), with Brodheim and Keyfitz, Cy studied a Markov chain that
would arise in inventory control and blood management. The model involved a random walk
that takes at most n steps to the right and has a reflecting barrier at the origin. Using com-
plex analysis and other novel techniques, the authors thoroughly characterized the stationary
probabilities of the chain.

6 Maintenance, quality, reliability

In many industries, continuous sampling of the output is essential when there is a need to
rectify defective products. Multi-level continuous sampling is a generalization that is based
on the specification of several levels of partial inspection. Derman et al. (1957) studied three
generalizations of multi-level plans (MLPs). They obtained explicit relationships between
the average outgoing quality limit (AOQL) and parameters for two of the plans. The rela-
tionship could be approximated for the third plan.

Derman and Solomon (1958) used the theory of Markov processes on a sampling inspec-
tion problem. Lots of items are maintained, whereas the quality of each item deteriorates
randomly over time. Lots are inspected and those failing are replaced with fresh ones. The
objective is to maintain a high probability of having sufficient items of good quality at all
time. The effectiveness of sampling plans and replacement policies were evaluated.

Derman et al. (1959) studied two inspection procedures that used complete inspection
and random sampling intermittently. Random sampling here referred to the inspection of
one randomly chosen item from every k-item block. For both procedures, they derived the
average outgoing quality limit without the assumption of control. That is, they let Nature
play the adversary to each procedure and then they derived its worst-case long-run portion
of undetected defective items. These average outgoing quality limit results were compared
to those employed under the “control assumption” that each item has an equal p chance of
being defective.

Derman (1961a) treated a surveillance-scheduling problem and derived the optimal
schedule under a min-max criterion. In addition (Derman 1963a), he considered optimal
replacement rules when changes of state are Markovian.

In Derman (1962b) he gave a simple rule for determining the most efficient sequence
of independent inspections. Suppose test i costs ci and each product has an independent pi

chance of failing the test, and a product failing k out of n tests will be rejected. Then, he
showed that the expected cost would be minimized by running the tests in an increasing
order of the ratio ci/pi .

Derman (1963b) modeled the problem of making maintenance and replacement decisions
to influence the random state evolution of a system as an MDP. His goal was to maximize
the expected time length between replacements while considering potential side conditions
that bound the probabilities of replacement through certain undesirable states. Using results
from (Derman 1962a), Cy showed how linear programming could be used to formulate the
problem.

Derman and Klein (1966) examined a stochastic traveling salesman problem, in which lo-
cations are to be inspected at required frequencies and traveling between locations is costly.
The authors set up the problem as an Markovian decision process in order to find policies that
minimize the average traveling cost in the long run while meeting inspection frequencies.
They found Markov, potentially non-deterministic, stochastic decision rules to be advanta-
geous.

Together with Lieberman and Ross, in Derman et al. (1972b) Derman studied the relia-
bility of a system consisting of some k components. When each component j is associated
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with a quality label aj , the probability that the system would perform satisfactorily is given
by some R(a1, . . . , ak). Suppose each component j comes in n varieties with a

j

1 ≤ · · · ≤ a
j
n ,

then there are a huge number of ways in which n systems could be simultaneously assem-
bled, each leading to a random number N of systems among the n that perform satisfactorily.
Using an extension of a well known result of Hardy, Littlewood, and Pólya on sums of prod-
ucts, authors showed how to maximize E[N ] when R(a1, . . . , ak) acts as a joint cumulative
distribution function: let the ith system have reliability R(a1

i , . . . , a
k
i ); that is, assemble the

worst components together, the second-worst components together, and so on and so forth.
In a follow-up paper (Derman et al. 1974a), with Lieberman and Ross, they investigated

two more reliability problems. The first problem is concerned with the assembly of inde-
pendent components into parallel systems so as to maximize the expected number of sys-
tems that perform satisfactorily. Unlike a series system which requires all its components to
work, a parallel system would perform satisfactorily so long as one of its component works.
The authors showed the obtainability of an optimal assembly when the reliability of each
assembled system could be made equal. Otherwise, bounds on the optimal number of per-
forming systems were given. The second problem deals with the allocation of satisfactory-
performance probabilities pm among n components so as to maximize the reliability of a
single system made out of these components. Optimal solutions were characterized for dif-
ferent system designs.

In the paper (Derman et al. 1978) Derman, Lieberman, and Ross were concerned with a
system that needs to stay operational for T units of time. A key component of the system
needs to be replaced every time it fails. Different types of this component have different
exponential distributions for their life times and replacement costs. The authors studied how
to assign the initial component and subsequent replacements so as to minimize the total ex-
pected cost over the time horizon. Later in Derman et al. (1979b) they continued to consider
the case where the system’s operational time length T is random and there are two compo-
nent types, one more costly and lasting longer and another less costly and lasting shorter.
Results formalized the intuition that more expensive replacements would be used when the
system is relatively new.

Derman and Smith (1979) followed with a more general case involving n component
types, with positive component costs c1 < · · · < cn and exponential failure rates. They es-
tablished the structure of an optimal policy when the distribution function F of T is of
increasing failure rate (IFR), i.e., F ′(t)/(1 − F(t)) is increasing in t . They also developed
an algorithm for finding an optimal policy. Some characterizations and properties of optimal
policies were also obtained for the case where component life distributions are not exponen-
tial. Further, in Derman and Smith (1980), they offered an alternative proof for the result
that, under reasonable conditions, the life distribution function F(t) of a system sustaining
cumulative randomly arriving damages has the increasing failure rate on average (IFRA)
property, i.e., 1

t
log(1 − F(t)) is increasing in t . The proof utilized the celebrated IFRA

closure theorem in reliability theory.
Derman et al. (1982) studied a system that consists of n components that are linearly

ordered. Each component either functions or fails and the system would be put out of service
by the failure of any k consecutive components. When the status of each component is i.i.d.,
they provided recursive formulas and bounds for computing the system reliability. Some
questions regarding optimal system design were also answered.

Derman et al. (1983) gave a probabilistic proof to the result that, for a birth and death
process starting in state 0, the time of first passage into state n has an IFR distribution.
A similar result was given for the nonnegative diffusion process. Derman, Lieberman, and
Schechner in Derman et al. (1984b) gave formulas and tables that would enable users of
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the sequential probability ratio tests to make acceptance or rejection decisions when the test
procedure is prematurely truncated. These tests would comply with the prevailing at the time
Military Standard: MIL-STD 781C.

Derman et al. (1984a) considered an extreme replacement problem where a vital com-
ponent such as a pacemaker has to be replaced before its failure knocks the system out of
commission for good. With n spares with a common distribution of life, the objective was
to schedule the replacements so as to maximize the expected life of the system. Authors
showed that the maximum expected life time when n spares are available is increasing and
concave in n. They also proved the intuitively expected result that the optimal length of time
to use a component before replacement when n spares are available, is decreasing in n. Also
considered were various limiting relationships and equal-interval schedules.

Katehakis and Derman (1984) treated the optimal assignment over time of a single re-
pairman to failed components in a series system with exponentially-distributed component
failure and repair times. Component failures can occur even while the system is not func-
tioning and the repairman can be freely re-assigned among failed components. They showed
that assigning the repairman to the failed component with the smallest failure rate would al-
ways maximize the availability of the system. Their proof relied on establishing that the
aforementioned policy solves the functional equations of an equivalent Markov decision
problem of minimizing the expected first passage times to the functioning state. The same
policy was shown by Katehakis and Derman (1987) to be optimal when discounting over
time is involved. We note that this was an open problem at that time and many well known
people in the field had worked on and provided solutions to versions of the problem.

Derman et al. (1987) studied a sampling inspection problem involving imperfect inspec-
tion, where a large lot is sampled by a number of inspectors with unknown probabilities of
not detecting a defect for the purpose of ascertaining its number of defective units. A sam-
pling plan was provided for estimating the number of defective units in the lot.

Derman C. and Koh (1988) used the mean square error criterion to compare two different
estimators of software failure rate, and found that one tended to be better when the number
of errors is small to moderate and the other when the number of errors is large. Also, Der-
man and Ross (1995) showed that a new estimator for the standard deviation parameter in
the standard quality control model would have a smaller mean square error than the usual
estimator when the data are normal. Unlike the usual estimator, it would remain consistent
even when the data are not normal.

Katehakis and Derman (1989) investigated the problem of characterizing properties of
optimal maintenance (i.e., server allocation to failed components) policies for systems com-
posed of highly reliable components. The problem is to assign arriving failures to distin-
guishable servers so as to optimize a measure of system performance. This an intractable
problem due to the high dimension of the state space, even under the assumption of expo-
nential distributions for the repair and failure free times. To address this problem the authors
employed Maclaurin series expansions of the value functions of related Markovian decision
processes with respect to a parameter of the component failure or repair (service) rates. By
studying the coefficients of these expansions they obtained solutions and characterizations
for the important case of a highly reliable system of general structure function.

7 Inventory, assignment, allocation, investment

Derman worked on many operations research problems in which his mastery of probability
and stochastic processes was put to good use. Roughly, we bin these problems into inven-
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tory control, stochastic assignment, stochastic sequential allocation, and investment. As in
previous sections, we present his works in chronological order.

Derman and Klein (1958a) studied three problems, all concerning the optimal times to
release items from storage to meet given demand schedules. The utility of an item is depen-
dent on the age at which it is issued. The objective taken was the maximization of the total
utility obtainable from the issuance of the items. The authors identified the convexity of the
utility function, among other things, as the most prominent condition that would result in the
optimality of the last in, first out (LIFO) issuance policies. Symmetrically, they showed the
intimate link between a concave utility and first in, first out (FIFO) policies. In a follow-up
note, Derman and Klein (1959) presented examples to which their earlier theory could be
applied.

Derman (1959) considered a distribution-of-effort problem. It is about how to divide T

units of a product or service among k locations whose demands at the time of allocation
are random, so that the total expected amount of demand being satisfied can be maximized.
A general condition about demands was given under which an optimal allocation could be
found in the interior of the feasible region for allocations (a1, . . . , ak). Also examined was
the optimal decision on the total initial production T .

Derman and Lieberman (1967) worked on a discrete-time joint stocking and replacement
problem. Items are purchased in N -sized batches, after each of which they are put into
service one after another. Each item in service fails in a period with a certain probability,
and before giving out or being replaced, it holds the same randomly generated performance
level. The level in turn influences the cost incurred in each period the item is operational.
The replenishment cost is of course dependent on the batch size N . The decision maker is to
select the order size and the replacement policy that minimizes the expected cost per period
in the long run.

The authors modeled the problem as a Markov decision problem with an average criterion
and a denumerable state space. Based on a theoretical result concerning the optimality of de-
terministic Markovian policies under mild conditions, they showed that optimal replacement
follows a threshold policy. They established that a policy improvement type procedure de-
veloped in Derman (Derman 1966) could be used to compute the optimal policy. Bounds
were also established for the optimal replenishment batch size.

Derman et al. (1972a) studied a stochastic assignment problem, in which n men are
available to perform n jobs that arrive in a sequential order. Each man i is associated with a
positive number pi . Associated with the j th job is a random variable Xj the value of which
is revealed upon arrival. The reward from assigning man i to job j when Xj = xj is pixj .
It is first assumed that the Xj are independent and identically distributed random variables.
Let π(j) denote the man (identified by number) assigned to the j th arriving job, by a pol-
icy π . The objective is to find a π that maximizes the expectation E(

∑n

1 pπ(j)Xj ). A special
case of this model is a generalization of the “asset disposal” problem studied previously by
Samuel Karlin. Suppose that there are k ≤ n identical houses to be sold. Offers assumed to
be a sequence of independent identically distributed random variables X1, X2, . . . arrive in a
sequential manner. The seller must dispose of all k ≤ n houses by no later than the nth offer.
The problem is to determine which offers to accept in order to maximize the total expected
profit. This problem becomes a special case of the stochastic assignment problem when one
takes a sequence of pj where the first k terms are 1 and the rest 0 with the interpretation
that an assignment of an offer to a 1 (respectively to a 0) means acceptance (respectively
rejection) of the offer. The authors derived the structure of the optimal policy using induc-
tion and the Hardy, Littlewood, Pólya inequality which states that for sequences of numbers
p1, . . . , pn and x1, . . . , xn and with p(1) ≤ p(2) ≤ · · · ≤ p(n) and x(1) ≤ x(2) ≤ · · · ≤ x(n) de-
noting the ordered values of the p’s and of the x’s, it is true that

∑n

1 pjxj ≤ ∑n

1 p(j)x(j).
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They showed that at any stage when there are m pairs of men and jobs remaining, the real
line � could be partitioned into m intervals. When the value x of the emerging job falls into
the kth interval, the remaining man with the kth ranked p value should be assigned to this
job. More strikingly, the intervals do not depend on the p values, and they can be generated
through an iterative procedure. When the reward is a supermodular function of pi and xj

rather than just a simple product of them, the interval policy is still valid, albeit being depen-
dent on the p values and much more difficult to compute. A byproduct of this research is that
the authors obtained the following generalization of the “Hardy, Littlewood, Pólya inequal-
ity”. When p1 ≤ p2 ≤ · · · ≤ pn and the successive job values X1,X2, . . . ,Xn form a sub-
martingale, the optimal policy is to assign man j to the j th arriving job for eachj = 1, . . . n,
because E[Xj ] is increasing from the submartingale assumption. The point of this result
is that for any value of X1 it is optimal to assign man 1 to job 1, and so on. The authors
consider several extensions such as the case in which there is a cost c(p) to retain a man
having an associated p value and general assignment reward functions r(p, x).

Albright and Derman (1972) worked on the limiting behavior of the optimal assignment
policy for the product-award case. They showed that in the limit all men have the same 1/n

chance of being assigned first, when the number n of men and jobs approaches +∞.
Derman et al. (1974b) studied an optimal resource allocation problem, in which a fixed

budget A was divided among the building of n components to ensure that k of them would
be successful. The success rate of each component is a function P (x) of the money put into
it. The log-concavity of P (·) was identified as a sufficient condition for the optimality of the
equal-allocation rule. Cases with general P (·) but k = 1 or P (x) = x were also analyzed.
The authors further discuss this problem in Derman et al. (1975a).

Derman, Lieberman, and Ross in Derman et al. (1975b) made a statement on an often-
encountered dilemma: whether to put more money into an available investment opportunity
with decreasing marginal returns or wait for another opportunity whose appearance in the
future is yet uncertain. Under both discrete- and continuous-time settings, authors character-
ized the optimal policy as one advocating more caution when either money is tight or time is
abundant. Under special profit functions, they gave closed-form expressions for the policy.

Brodheim et al. (1975) presented two inventory policies for perishable items such that
the inventory level under one policy would dominate that under the other on each sample
path. Derman and Ignall (1975) gave more general conditions under which the domination
in steady-state distribution could still be held.

Derman et al. (1976) studied another sequential allocation problem. Here, a number of
periods are allowed for the construction of a certain number of items. Each period is devoted
to one item, with the success rate being an increasing function of the money invested into
the construction. In the end, a convex cost is associated with the number of required items
not yet constructed. An optimal investment policy was identified, in which the spending in a
period is increasing in the number of items to be constructed and decreasing in the number
of periods still remaining.

The same authors in Derman et al. (1979a) analyzed a classical model for selling an
asset in which randomly distributed offers X come in daily and a decision must be made
as to whether or not to sell. For each day the item remains unsold a maintenance cost c is
incurred. Under a known offer-size distribution F , the optimal policy had been shown to be
determined by a critical number xF , so that the first offer exceeding xF is accepted.

Here, bounds on the returns of certain policies were obtained. Also established was a
link between the NWUE property of F , saying that EF [X − a|X > a] ≥ EF [X] for a ≥ 0,
and the monotone relationship between a resulting policy and that for an exponentially dis-
tributed offer with the same mean. For both cases where past offers may or may not be
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recalled, authors derived properties regarding the optimal policies and value functions when
Bayesian updating is used in learning the unknown offer-size distribution.

Derman et al. (1979c) studied a variant of the famous secretary problem. The problem is
about finding the best strategy to stopping interviewing candidates for a secretarial position.
When there are M candidates, it is known that the interviewer should pick the best candidate
first encountered after about M/e interviews, where e is the base of the natural logarithm.
Here authors let M be random and gave sufficient conditions on its distribution that would
be responsible for simple optimal policies.

Furthermore, Derman et al. (1980) considered a dynamic assignment problem in which
multiple servers with exponential service times receive customers that arrive at random times
and the latter are lost when all machines are occupied. Authors showed that assigning an ar-
rival to an available machine with the highest (lowest) rate would stochastically minimize
(maximize) the number of customers in the system. The result was applied to a particular
component-repair problem with exponential repair times in which the policy of always re-
pairing the component least prone to fail was shown to stochastically maximize the number
of working components.

Katehakis and Derman (1986) formulated a problem regarding assigning one of several
treatments in clinical trials as a discounted bandit problem, using a Bayes framework with
Dirichlet priors. A solution involves comparison of certain treatment dependent indices,
where each index is dependent only on its own treatment past success-failure record. In
each period it is optimal to select the treatment with the largest index. Here, the authors
found an efficient way to calculate the indices, using a characterization of the index as a
solution to a restart problem that had been obtained by Katehakis and Veinott. They further
showed how solutions of any prescribed accuracy could be obtained with computations that
involved a finite number of state variables.

8 Some additional pictures

Cy Derman with Ingram Olkin and Leon Gleser and a copy of their book at Stanford in 1986
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Cy Derman at Columbia in 1973

Cy Derman elected fellow of ASA
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Cy Derman with his father in 1945 at the occasion of his college graduation

Cy Derman (undated) with his violin
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Cy Derman (undated)

Cy Derman with his daughter Hessy, at Imperial College London in 1970
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